20x^2+40=24x^2-40

Simple and best practice solution for 20x^2+40=24x^2-40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20x^2+40=24x^2-40 equation:



20x^2+40=24x^2-40
We move all terms to the left:
20x^2+40-(24x^2-40)=0
We get rid of parentheses
20x^2-24x^2+40+40=0
We add all the numbers together, and all the variables
-4x^2+80=0
a = -4; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-4)·80
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*-4}=\frac{0-16\sqrt{5}}{-8} =-\frac{16\sqrt{5}}{-8} =-\frac{2\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*-4}=\frac{0+16\sqrt{5}}{-8} =\frac{16\sqrt{5}}{-8} =\frac{2\sqrt{5}}{-1} $

See similar equations:

| -c-9=c+47 | | x=+1/4=+3/6 | | h-89=-h-3 | | 2t-7=3t-32 | | 8x+74+2x+56=18- | | x*x=10000000 | | 6s+23=3s+29 | | Z=9(x-4) | | 2(42)-5c=1c(42+2) | | 7u-22=3u+26 | | -a+4=a+76 | | y-16=3y-50 | | r+53=-r+5 | | v=2v-52 | | 10x-12x=14 | | x/3.6−22=−18 | | y-9=4y-96 | | 4=2.5t= | | -7+x/4=-19 | | (x-1)+40=-2x | | x/−4+6=−6.5 | | d/2+7=16 | | 2x-7=7x-82 | | v=8v-77 | | b/9+9=13 | | b/3+3=10 | | a=10a-45 | | b/3+4=10 | | w-11=2w-94 | | n/8+6=4 | | 5c=c+20 | | 14=a/5+5 |

Equations solver categories